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Abstract

The purpose of this document is to present the standard for neural network
verification benchmarks, expressed as VNN-LIB. This standard builds on the
Open Neural Network Exchange (ONNX) format for model description, and
on the Satisfiabily Modulo Theories Library (SMT-LIB) format for the prop-
erty specification. Throughout the document we will refer to the combination
of model and property description formats as the VNN-LIB format.



Introduction

In the last years the community of neural networks verification has been
growing larger and larger: after three years of the official competition VNN-
COMP we acquired some data about components that are used the most
to define neural networks, and the kind of properties that seem to be most
relevant. It is thus time to attempt the drafting of a standard which should
facilitate the interaction between the developers of verification systems and
the users of such

This document is structured as follows. In Chapter 1 we present the guide-
lines for the model specification language, i.e., how to describe the neural
network for verification purposes and which operators are either supported,
to be supported or discouraged; in Chapter 2 we present the guidelines for
the property specification language, i.e., how to specify the requirements that
the neural network ought to satisfy. Finally, in Chapter 3 we present some
examples of benchmarks to further illustrate the current capabilities and the
limitations of the VNN-LIB format.
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Chapter 1

Modeling language

Here we describe the operators that are officially supported, i.e., those opera-
tors that allow to represent the majority of the models considered in the past
VNN competitions. We also considered the ONNX model zoo 1 and tried
to include most of the operators required by the networks therein. We left
some operator out in the interest of compactness. We consider the model zoo
as representative enough for the kind of model architectures, and operators,
that are commonly used in the VNN competitions and, in general, in the
Machine Learning community.

The following operators cover almost every benchmark provided in the
VNN-COMP repositories for sequential networks; other kinds of networks
(ResNet, Recurrent, etc.) are not currently covered completely by the stan-
dard, but we may consider an evolution of the document in the direction of
including other operators with support and guidance from the community.

Remark: While the standard supports the operators, it is strongly un-
advised to include pre-processing in the benchmark model, e.g., normal-
ization and flattening, since the properties should match the first node
with the same input dimension.

1.1 Supported operators

� Add (Add) operator performs the element-wise sum of a tensor and a
scalar. We strongly encourage to use the Gemm operator when paired
with MatMul.

� AveragePool (Average Pooling) operator supports downsampling with
averaging.

1https://github.com/onnx/models
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� BatchNormalization (Batch Normalization) operator supports adjust-
ing and scaling the activations functions, and it is expressive enough
to represent general batch normalization.

� Concat (Concatenation) operator concatenates a list of tensors into a
single tensor, with the same shape except for the axis to concatenate
on.

� Conv (Convolutional) operator supports all the attributes to encode a
generic convolutional layer.

� Dropout (Dropout) operator supports random dropping of units (during
training). This operator should not appear on trained models.

� Flatten (Flatten) this operator converts multidimensional arrays (ten-
sors) to single dimensional ones; it is used instead of Reshape in some
of the models in the zoo.

� Gemm (General Matrix Multiplication) operator encodes matrix multi-
plication possibly with a scalar coefficient and the addition of another
matrix; as such Gemm can encode fully connected layers in neural net-
works.

� LRN (Local Response Normalization) operator supports normalization
over local input regions; it is uatilized in Alexnet and derived networks.

� MatMul (Matrix Multiplication) operator performs a numPy-like ma-
trix multiplication. We strongly encourage to use the Gemm operator.

� MaxPool (Maximum pooling) operator supports downsampling with
maximization.

� ReLU (Rectified Linear Unit) operator encodes the corresponding ac-
tivation function σ(x) = max(0, x).

� Reshape (Reshape) operator supports reshaping of the tensor’s dimen-
sions.

� Sigmoid (Logistic Unit) operator encodes the corresponding activation
function σ(x) = 1

1+e−x .

� SoftMax (Softmax Unit) operator transforms vectors into probabilities,
e.g., for selecting among different classes and it is commonly utilized
in state of the art networks.
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� Sub (Sub) operator performs element-wise binary subtraction between
two tensors.

� Unsqueeze (Unsqueeze) operator removes dimensions of size 1 from ten-
sors, and it is utilized, e.g., in Densenet and Inception2.
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Chapter 2

Property specification language

2.1 Verification task

Inputs and outputs of operators are tensors, i.e., multidimensional arrays
over some domain, usually numerical. If we let D be any such domain, a
k-dimensional tensor on D is denoted as x ∈ Dn1×...×nk . For example, a
vector of n real numbers is a 1-dimensional tensor x ∈ Rn, whereas a matrix
of n × n Booleans is a 2-dimensional tensor x ∈ Bn×n with B = {0, 1}. A
specific element of a tensor can be singled-out via subscripting.

Given a k-dimensional tensor x ∈ Dn1×...×nk , the element xi1,...,ik ∈ D is
a scalar corresponding to the indexes i1, . . . , ik. For example, in a vector of
real numbers x ∈ Rn, x1 is the first element, x2 the second and so on. In a
matrix of Boleans x ∈ Bn×n, x1,1 is the first element of the first row, x2,1 is
the first element of the second and so on.

An operator f is a function on tensors f : Dn1×nh → Dm1×mk where h is
the dimension of the input tensor and k is the dimension of the output tensor.
Given a set F = {f1, . . . , fp} of p operators, a feedforward neural network is a
function ν = fp(fp−1(. . . f2(f1(x)) . . .)) obtained through the composition of
the operators in F assuming that the dimensions of their inputs and outputs
are compatible, i.e., if the output of fi is a k-dimensional tensor, then the
input of fi+1 is also a k-dimensional tensor, for all 1 ≤ i < p.

Given a neural network ν : Dn1×nh → Dm1×mk built on the set of operators
{f1, . . . , fp}, let x ∈ Dn1×nh denote the input of ν and y1, . . . , yp denote the
outputs of the operators f1, . . . , fp — therefore yp is also the output y of ν.
We assume that, in general, a property is a first order formula P (x, y1, . . . yp)
which should be satisfied given ν. More formally, given p bounded sets
X1, . . . , Xp in I such that Π =

⋃p
i=1Xi and s bounded sets Y1, . . . , Ys in O
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such that Σ =
⋃s

i=1 Yi, we wish to prove that

∀x ∈ Π→ ν(x) ∈ Σ. (2.1)

The definition of the property given in equation (2.1) consists of a pre-
condition x ∈ Π and a post-condition ν(x) ∈ Σ. The pre-condition encodes
the bounds of the input space, i.e., bounds the variables that are fed to
the network, and the post-condition defines the safe zone, outside which the
verification task fails.

2.2 Property specification

The SMT-LIB language is a well-known language used to formalize Satis-
fiability Modulo Theories problems, and is expressive enough to represent
the verification properties of interest. In this language, it is possible to de-
fine both the pre- and post-conditions at once, by defining the variables for
the input and the output of the neural network. In the following we show
some examples of networks and corresponding properties in the SMT-LIB
language.

Remark: Note that the input and output variable names should match
the identifiers of the input and of the last node in the network.
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Chapter 3

Examples

3.1 ACAS XU

We consider a standard example of an ACAS XU network with 6 hidden
layers of 50 ReLU neurons each; the input and output layers consist of 5
neurons. In Figure 3.1 we show a graphical representation of this model.
The ACAS XU network acts as a function ν : I5 → O5 with I = O = R. A
property of interest for this kind of network can be stated as follows:

−ε0 ≤ x0 ≤ ε0
−ε1 ≤ x1 ≤ ε1
−ε2 ≤ x2 ≤ ε2
−ε3 ≤ x3 ≤ ε3
−ε4 ≤ x4 ≤ ε4
y0 − y1 ≤ 0
y0 − y2 ≤ 0
y0 − y3 ≤ 0
y0 − y4 ≤ 0

(3.1)

where εi ∈ R+ with 0 ≤ i ≤ 4 are arbitrary positive input noise constants,
(x0, . . . , x4) ∈ R5 is a sample of the input vector and (y0, . . . , y4) ∈ R5 is the
corresponding output vector (y0, . . . , y4) = ν((x0, . . . , x4)).

The property can be experessed in the SMT-LIB language using specific
identifiers for input and output vectors derived from the identifiers used in
the ONNX model. In particular, ONNX only provides an identifier for the
output of each layer and a global identifier for the network input; for this
reason we identify the input tensor as X and the output tensor as the last
Fully Connected (Gemm) node identifier FC6, both with dimension 5. We
can then express property (3.1) in SMTLIB as:
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Figure 3.1: Graphical representation of a ONNX model of an ACAS XU
network. The image is generated in NeVer2.

; d e f i n i t i o n o f the v a r i a b l e s o f i n t e r e s t
( dec la re=fun X 0 ( ) Real )
( dec la re=fun X 1 ( ) Real )
( dec la re=fun X 2 ( ) Real )
( dec la re=fun X 3 ( ) Real )
( dec la re=fun X 4 ( ) Real )

( dec la re=fun FC6 0 ( ) Real )
( dec la re=fun FC6 1 ( ) Real )
( dec la re=fun FC6 2 ( ) Real )
( dec la re=fun FC6 3 ( ) Real )
( dec la re=fun FC6 4 ( ) Real )

; d e f i n i t i o n o f the c o n s t r a i n t s
( a s s e r t (<= X 0 eps 0 ) )
( a s s e r t (>= X 0 =eps 0 ) )
( a s s e r t (<= X 1 eps 1 ) )
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( a s s e r t (>= X 1 =eps 1 ) )
( a s s e r t (<= X 2 eps 2 ) )
( a s s e r t (>= X 2 =eps 2 ) )
( a s s e r t (<= X 3 eps 3 ) )
( a s s e r t (>= X 3 =eps 3 ) )
( a s s e r t (<= X 4 eps 4 ) )
( a s s e r t (>= X 4 =eps 4 ) )

( a s s e r t (<= (= FC6 0 FC6 1 ) 0 . 0 ) )
( a s s e r t (<= (= FC6 0 FC6 2 ) 0 . 0 ) )
( a s s e r t (<= (= FC6 0 FC6 3 ) 0 . 0 ) )
( a s s e r t (<= (= FC6 0 FC6 4 ) 0 . 0 ) )

This fragment of code is compliant with the SMT-LIB 2 language standard
and it defines the property of interest in term of input-output relations.
Clearly, this code is not complete in terms of internal constraints of the
network: these will be extracted based on the verification methodology of
interest from the ONNX model of the network.

3.2 MNIST

We consider a standard example of a convolutional MNIST network with two
convolutional layers consisting of a convolution with a 5 × 5 kernel with 2
pixel padding, a ReLU activation function and a Max Pooling with a 2 × 2
kernel. The first convolution generates 16 channels, and the second 32; the
result is flattened to a single vector which is finally fed to a Fully Connected
layer. The input layer consists of a three-dimensional tensor 1× 28× 28 and
the output layer consists of 10 neurons for the classification. In Figure 3.2
we show a graphical representation of this model. A network for classifying
objects in the MNIST dataset is a function ν : I1,28,28 → O10 with I = O = R.

A local robustness property can be expressed in a similar way with respect
to the ACAS XU network: for a local sample x̂ such that ν(x̂) = y9 and an
input noise ε, the classification should not change for a ε perturbation.

∀i ∈ [0, 783] : x̂− ε ≤ xi ≤ x̂+ ε
∀j ∈ [0, 8] : yj − y9 ≤ 0

(3.2)

In order to represent correctly the variables corresponding to multi-dimensional
tensors we allow two different notations: one that distinguishes the single di-
mensions and one that flattens the tensor in a single 1-D array.
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Figure 3.2: Graphical representation of a ONNX model of a convolutional
MNIST network. The image is generated in NeVer2.

Tensor representation. Let xD be a tensor in a D-dimensional space. We
associate the dimensional subscripting with a single underscore for separating
the variable name and the variable subscript, and D−1 dashes for separating
the dimension values:

� 1-D tensor: X 0, X 1, . . . , X n

� 2-D tensor: X 0-0, X 0-1, . . . , X 1-0, X 1-1, . . . , X n-m

� 3-D tensor: X 0-0-0, . . . , X i-j-k, . . . , X n-m-p

� · · ·

In the example above, X 0-3-2 corresponds to the input x0,3,2 ∈ x3 in tensor
form.
Remark: Please note that this notation is encouraged, as it provides a
clearer interpretation of the property.
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Array representation. Let xD be a tensor in a D-dimensional space. We
provide the following algorithm to flatten it in a single 1-D array.

Algorithm 1 Tensor flattening

1: procedure flatten(x)
2: idx = 0
3: for a == 0 to N1 do
4: for b == 0 to N2 do
5: . . .
6: for k == 0 to Nk do
7: X idx = xa,b,...,k
8: idx = idx+ 1
9: end for

10: end for
11: end for
12: end procedure

All properties which comply with either representation should be accepted
and readable. An example in the SMT-LIB language is provided as follows,
highlighting the two possibilities for defining the variables.

; d e f i n i t i o n o f the v a r i a b l e s o f i n t e r e s t
( dec la re=fun X 0 ( ) Real ) ; ( dec la re=fun X 0=0=0 ( ) Real )
( dec la re=fun X 1 ( ) Real )
( dec la re=fun X 2 ( ) Real )
. . .
( dec la re=fun X 782 ( ) Real ) ; ( dec la re=fun X 0=26=27 ( ) Real )
( dec la re=fun X 783 ( ) Real ) ; ( dec la re=fun X 0=27=27 ( ) Real )

( dec la re=fun FC0 0 ( ) Real )
( dec la re=fun FC0 1 ( ) Real )
( dec la re=fun FC0 2 ( ) Real )
. . .
( dec la re=fun FC0 9 ( ) Real )

; d e f i n i t i o n o f the c o n s t r a i n t s
( a s s e r t (<= X 0 eps ) ) ; ( a s s e r t (<= X 0=0=0 eps ) )
( a s s e r t (>= X 0 =eps ) ) ; ( a s s e r t (>= X 0=0=0 =eps ) )
. . .
( a s s e r t (<= X 783 eps ) ) ; ( a s s e r t (<= X 0=27=27 eps ) )
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( a s s e r t (>= X 783 =eps ) ) ; ( a s s e r t (>= X 0=27=27 =eps ) )

( a s s e r t (<= (= FC0 0 FC0 9 ) 0 . 0 ) )
( a s s e r t (<= (= FC0 1 FC0 9 ) 0 . 0 ) )
. . .
( a s s e r t (<= (= FC0 8 FC0 9 ) 0 . 0 ) )
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